E-BART: Jointly Predicting and Explaining Truthfulness


Automated fact-checking (AFC) systems exist to combat disinformation, however their complexity makes them opaque to the end user, making it difficult to foster trust. In this paper, we introduce the E-BART model with the hope of making progress on this front. E-BART is able to provide a veracity prediction for a claim, and jointly generate a human-readable explanation for this decision. We show that E-BART is competitive with the state-of-theart on the e-FEVER and e-SNLI tasks. In addition, we validate the joint-prediction architecture by showing 1) that generating explanations does not significantly impede the model from performing well in its main task of veracity prediction, and 2) that predicted veracity and explanations are more internally coherent when generated jointly than separately. Finally, we also conduct human evaluations on the impact of generated explanations and observe that explanations increase human ability to spot misinformation and make people more skeptical about claims.

Proceedings of the 2021 Truth and Trust Online Conference